Skip to main content

Advertisement

Log in

Quantitative summer-temperature reconstructions for the last 2000 years based on pollen-stratigraphical data from northern Fennoscandia

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Quantitative reconstructions of mean July temperatures (T jul) based on new and previously published pollen-stratigraphical data covering the last 2000 years from 11 lakes in northern Fennoscandia and the Kola Peninsula are presented. T jul values are based on a previously published pollen-climate transfer function for the region with a root-mean-square error of prediction (RMSEP) of 0.99°C. The most obvious trend in the inferred temperatures from all sites is the general decrease in T jul during the last 2000 years. Pollen-inferred T jul values on average 0.18 ± 0.56°C (n = 91) higher than present (where “present” refers to the last three decades based on pollen-inferred T jul in core-top samples) are indicated between 0 and 1100 AD (2000–850 cal year BP), and temperatures −0.2 ± 0.47°C (n = 78) below present are inferred between 1100 and 1900 AD (850–50 cal year BP). No consistent temperature peak is observed during the ‘Medieval Warm Period’, ca. 900–1200 AD (1100–750 cal year BP), but the cooler period between 1100 and 1900 AD (850–50 cal year BP) corresponds in general with the ‘Little Ice Age’ (LIA). Consistently with independent stable isotopic data, the composite pollen-based record suggests that the coldest periods of the LIA date to 1500–1600 AD (450–350 cal year BP) and 1800–1850 AD (150–100 cal year BP). An abrupt warming occurred at about 1900 AD and the twentieth century is the warmest century since about 1000 AD (950 cal year BP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The pollen and radiocarbon data are available on-line through the World Data Center for Paleoclimatology (ftp://ftp.ncdc.noaa.gov/pub/data/paleo/europe/fennoscandia2008pollen.txt).

References

  • Bakke J, Lie Ø, Dahl SO, Nesje A, Bjune AE (2008) Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Global Planet Change 60:28–41. doi:10.1016/j.gloplacha.2006.07.030

    Article  Google Scholar 

  • Barnekow L (1999) Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern Sweden, based on macrofossil and pollen records. Holocene 9:253–265. doi:10.1191/095968399676322637

    Article  Google Scholar 

  • Barnekow L (2000) Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, northern Sweden. J Paleolimnol 23:399–420. doi:10.1023/A:1008171418429

    Article  Google Scholar 

  • Berger AL, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317. doi:10.1016/0277-3791(91)90033-Q

    Article  Google Scholar 

  • Bergman J, Hammarlund D, Hannon G, Barnekow L, Wohlfarth B (2005) Deglacial vegetation succession and Holocene tree-limit dynamics in the Scandes Mountains, west-central Sweden: stratigraphic data compared to megafossil evidence. Rev Palaeobot Palynol 134:129–151. doi:10.1016/j.revpalbo.2004.12.005

    Article  Google Scholar 

  • Bigler C, Larocque I, Peglar SM, Birks HJB, Hall RI (2002) Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene 12:481–496. doi:10.1191/0959683602hl559rp

    Article  Google Scholar 

  • Bigler C, Barnekow L, Heinrichs ML, Hall RI (2006) Holocene environmental history of Lake Vuolep Njakajaure (Abisko National Park, northern Sweden) reconstructed using biological proxy indicators. Veg Hist Archaeobot 15:309–320. doi:10.1007/s00334-006-0054-x

    Article  Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690

    Article  Google Scholar 

  • Birks HJB, Seppä H (2004) Pollen-based reconstructions of the late-quaternary climate in Europe—progress, problems, and pitfalls. Acta Palaeobot 44:317–334

    Google Scholar 

  • Bjune AE (2005) Holocene vegetation history and tree-line changes on a north–south transect crossing major climate gradients in southern Norway—evidence from pollen and plant macrofossils in lake sediments. Rev Palaeobot Palynol 133:249–275. doi:10.1016/j.revpalbo.2004.10.005

    Article  Google Scholar 

  • Bjune AE, Birks HJB (2008) Holocene vegetation dynamics and inferred climate changes at Svanåvatnet, Mo i Rana, northern Norway. Boreas 37:146–156

    Article  Google Scholar 

  • Bjune AE, Birks HJB, Seppä H (2004) Holocene vegetation and climate history on a continental—oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas 33:211–223. doi:10.1080/03009480410001244

    Article  Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405. doi:10.1126/science.1090372

    Article  Google Scholar 

  • Cleveland WS (1979) Robust locally-weighted regression and smoothing scatter plots. J Am Stat Assoc 74:829–836. doi:10.2307/2286407

    Article  Google Scholar 

  • Cubash U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A et al (2001) Projections of future climate change. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 525–582

    Google Scholar 

  • Dahl E (1988) The phytogeography of northern Europe (British isles, fennoscandia and adjacent areas). Cambridge University Press, Cambridge

    Google Scholar 

  • Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. Holocene 6:381–398. doi:10.1177/095968369600600401

    Article  Google Scholar 

  • Eronen M (1979) The retreat of pine forest in Finnish Lapland since the Holocene climatic optimum: a general discussion with radiocarbon evidence from subfossil pines. Fennia 157:93–114

    Google Scholar 

  • Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: part 1, chronology construction and initial inferences. Holocene 12:673–680. doi:10.1191/0959683602hl580rp

    Article  Google Scholar 

  • Grove JM (2001) The initiation of the “Little Ice Age” in regions around the North Atlantic. Clim Change 48:53–82. doi:10.1023/A:1005662822136

    Article  Google Scholar 

  • Grove JM, Switsur R (1994) Glacial geological evidence for the Medieval warm period. Clim Change 26:143–169. doi:10.1007/BF01092411

    Article  Google Scholar 

  • Grudd H (2008) Torneträsk tree-ring width and density AD 500-2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn. doi:10.1007/s00382-007-0358-2

    Google Scholar 

  • Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:643–656. doi:10.1191/0959683602hl578rp

    Article  Google Scholar 

  • Hammarlund D, Björck S, Buchardt B, Israelson C, Thomsen CT (2003) Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat Sci Rev 22:353–370. doi:10.1016/S0277-3791(02)00091-4

    Article  Google Scholar 

  • Heegaard E (2003) CagedepthR.txt—R function for age-depth relationship estimation. http://www.bio.uu.nl/~palaeo/Congressen/Holivar/Literature_Holivar2003.htm

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimate procedure by mixed-effect regression. Holocene 15:612–618. doi:10.1191/0959683605hl836rr

    Article  Google Scholar 

  • Helama S, Lindholm M, Timonen M, Eronen M (2004) Dendrochronologically dated changes in the limit of pine in northernmost Finland during the past 7.5 millennia. Boreas 33:250–259. doi:10.1080/03009480410001253

    Article  Google Scholar 

  • Helama S, Timonen M, Lindholm M, Meriläinen J, Eronen M (2005) Extracting long-period climate fluctuations from tree-ring chronologies over timescales of centuries to millennia. Int J Climatol 25:1767–1779. doi:10.1002/joc.1215

    Article  Google Scholar 

  • Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29. doi:10.1016/S0034-6667(01)00074-4

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jensen C, Vorren K-D, Mørkved B (2007) Annual pollen accumulation rate (PAR) at the boreal and alpine forest-line of north-western Norway, with special emphasis on Pinus sylvestris and Betula pubescens. Rev Palaeobot Palynol 144:337–361. doi:10.1016/j.revpalbo.2006.08.006

    Article  Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjornsdottir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307. doi:10.1002/jqs.622

    Article  Google Scholar 

  • Juggins S (2003) C2. A program for analysing and visualising palaeoenvironmental data. Version 1.3. University of Newcastle, UK

    Google Scholar 

  • Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative Holocene climatic record from diatoms in Northern Fennoscandia. Quat Res 54:284–294. doi:10.1006/qres.2000.2153

    Article  Google Scholar 

  • Kultti S, Mikkola K, Virtanen T, Timonen M, Eronen M (2006) Past changes in the Scots pine forest line and climate in Finnish Lapland: a study based on megafossils, lake sediments, and GIS-based vegetation and climate data. Holocene 16:381–391. doi:10.1191/0959683606hl934rp

    Article  Google Scholar 

  • Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37. doi:10.1016/0031-0182(65)90004-0

    Article  Google Scholar 

  • Lamb HH (1997) Climate, history and the modern world. Routledge, London

    Google Scholar 

  • Larsen LB, Vinther BM, Briffa KR, Melvin TM, Clausen HB, Jones PD et al (2008) New ice core evidence for a volcanic cause of the AD 536 dust veil. Geophys Res Lett 35:L04708. doi:10.1029/2007GL032450

    Article  Google Scholar 

  • Lie Ø, Dahl SO, Nesje A, Matthews JA, Sandvold S (2004) Holocene fluctuations of a polythermal glacier in high-alpine eastern Jotunheimen, central-southern Norway. Quat Sci Rev 23:1925–1945. doi:10.1016/j.quascirev.2004.03.012

    Article  Google Scholar 

  • Mann M, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762. doi:10.1029/1999GL900070

    Article  Google Scholar 

  • Moen A (1998) Vegetasjonsatlas for Norge: vegetasjon. Norwegian Mapping Authority, Hønefoss

    Google Scholar 

  • Nesje A, Dahl SO (2003) The “Little Ice Age”—only temperature? Holocene 13:139–145. doi:10.1191/0959683603hl603fa

    Article  Google Scholar 

  • Nesje A, Dahl SO, Andersson C, Matthews JA (2000) The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene. Quat Sci Rev 19:1047–1065. doi:10.1016/S0277-3791(99)00090-6

    Article  Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuation of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene 11:267–280. doi:10.1191/095968301669980885

    Article  Google Scholar 

  • Rosqvist GC, Leng MJ, Jonsson C (2007) North Atlantic region atmospheric circulation dynamics inferred from a late-Holocene lacustrine carbonate isotope record, northern Swedish Lapland. Holocene 17:867–873. doi:10.1177/0959683607080508

    Article  Google Scholar 

  • Seppä H (1996) Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia 174:1–96

    Google Scholar 

  • Seppä H (1998) Postglacial trends in palynological richness in the northern Fennoscandian tree-line area and their ecological interpretation. Holocene 8:43–53. doi:10.1191/095968398674096317

    Article  Google Scholar 

  • Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based reconstructions. Holocene 11:527–539. doi:10.1191/095968301680223486

    Article  Google Scholar 

  • Seppä H, Birks HJB (2002) Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri. Quat Res 57:191–199. doi:10.1006/qres.2001.2313

    Article  Google Scholar 

  • Seppä H, Hicks S (2006) Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quat Sci Rev 25:1501–1516. doi:10.1016/j.quascirev.2005.12.002

    Article  Google Scholar 

  • Seppä H, Weckström J (1999) Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajavri, Finland. Ecoscience 6:621–635

    Google Scholar 

  • Seppä H, Nyman M, Korhola A, Weckström J (2002) Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennscandia based on pollen and chironomid records. J Quat Sci 17:287–301. doi:10.1002/jqs.678

    Article  Google Scholar 

  • Seppä H, Birks HJB, Odland A, Poska A, Veski S (2004) A modern pollen—climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J Biogeogr 31:251–267. doi:10.1111/j.1365-2699.2004.00923.x

    Article  Google Scholar 

  • Seppä H, MacDonald GM, Birks HJB, Gervais BR, Snyder JA (2008) Late-Quaternary summer temperature changes in the northern-European tree-line region. Quat Res 69:404–412. doi:10.1016/j.yqres.2008.02.002

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA et al (1998) INTCAL 98 radiocarbon age calibration, 24 000–0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  • Telford RJ, Heegaard E, Birks HJB (2004) All age-depth models are wrong: but how badly? Quat Sci Rev 23:1–5. doi:10.1016/j.quascirev.2003.11.003

    Article  Google Scholar 

  • ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270:485–502. doi:10.1007/BF00028046

    Article  Google Scholar 

  • Weckström J, Korhola A, Erästö P, Holmström L (2006) Temperature patterns over the eight past centuries in Northern Fennoscandia inferred from sedimentary diatoms. Quat Res 66:78–86. doi:10.1016/j.yqres.2006.01.005

    Article  Google Scholar 

Download references

Acknowledgements

We thank Cathy Jenks for preparing Fig. 1. Sylvia M. Peglar is thanked for providing unpublished pollen data. Financial support was provided by the Norwegian Research Council for the work in northern Norway and northern Sweden. H. S. acknowledges financial support from the Academy of Finland (HOT-project). We are grateful to the three anonymous reviewers and Darrell Kaufman for their helpful comments. This is publication no. A 194 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Bjune.

Additional information

This is one of fourteen papers published in a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjune, A.E., Seppä, H. & Birks, H.J.B. Quantitative summer-temperature reconstructions for the last 2000 years based on pollen-stratigraphical data from northern Fennoscandia. J Paleolimnol 41, 43–56 (2009). https://doi.org/10.1007/s10933-008-9254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9254-y

Keywords

Navigation